Article ID Journal Published Year Pages File Type
4482502 Water Research 2010 9 Pages PDF
Abstract

Retention of bacterial cells as “particles” by silica sand during formation of a capillary fringe (CF) and the influence of motility was examined with motile Pseudomonas putida and non-motile Corynebacterium glutamicum suspensions in the absence of nutrients. The fractional retention of C. glutamicum cells at all regions of the CF was higher than for P. putida cells, most probably due to the motility of P. putida. Only about 5% of P. putida cells and almost no C. glutamicum cells reached the upper end of a CF of 10 cm height.With cell suspensions of P. putida and C. glutamicum in nutrient broth the development of a CF in silica sand fractions of 355–710 μm and 710–1000 μm respectively, was finished after about 6 h. Growth of cells proceeded for about 6 days. P. putida formed a biofilm on silica grains, whereas no attachment of C. glutamicum on silica sand occurred. Relative cell densities of C. glutamicum on the bottom and in the upper regions of the CF were always lower than those of P. putida and were also lower than those reached in suspended cultures with the same medium. In coarse sand the motile P. putida cells reached significantly higher cell densities in upper CF regions than in fine sand. Growth of C. glutamicum in the CF apparently was slower and a higher proportion of the energy was required for maintenance. Whereas cell densities of P. putida, in CFs of both sand fractions, varied less than one order of magnitude, those of C. glutamicum varied in a wider range from the basis to the top of the CF.Analyses of the esterase activity of P. putida and C. glutamicum with fluorescein diacetate (FDA) revealed that the cells in higher CF regions were significantly more active than those at the bottom of the CF. Furthermore, a significant correlation (r = 0.66, p < 0.01) between cells ml−1 and the FDA conversion to fluorescein was found.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,