Article ID Journal Published Year Pages File Type
4482837 Water Research 2011 12 Pages PDF
Abstract

The influences of three important interferences (silica, phosphate, and vanadate) and the effect of different pH levels and initial arsenate concentrations on the breakthrough of arsenic in adsorptive media columns were examined by using the Rapid Small Scale Column Test with a 35−2 fractional factorial design. Three commercially available adsorbents used for arsenic removal (E33, GFH and Metsorb) were tested. Results indicated that GFH was more susceptible to water quality changes than Metsorb and E33 under conditions tested. GFH also adsorbed more anions than the other two media. The pH was the factor that had the most impact on the performance of the columns, followed by arsenic concentration and silica concentration. Lowering pH from 8.3 to 7.0 resulted in an increase of the mean bed volume treated until 10 μg/L arsenic breakthrough by 40, 12 and 18 thousands BV treated by GFH, E33 and Metsorb columns, respectively. However, at high silica concentration, lowering pH did not increase the performance of the media. GFH and Metsorb were more sensitive to changes in arsenic concentration at low pH than at high pH. Although vanadium and phosphate were previously reported to reduce arsenic adsorption in batch tests, in column mode with the presence of competitors, their effect was insignificant compared to that of pH, arsenic or silica under the conditions used in this study.

► Effect of interferences on arsenic removal by adsorption on GFH, Metsorb and E33. ► Impact of pH, arsenic and silica are greater than that of vanadium or phosphate. ► GFH is more sensitive than Metsorb or E33 to water quality. ► Adjusting pH at high silica concentration may not improve column performance.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,