Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4483343 | Water Research | 2012 | 11 Pages |
River water was treated by ultrafiltration at a relatively low transmembrane pressure (40 mbar). As observed before, flux stabilization occurred after several days of operation although no back-flushing or cross flow was applied. Interruptions in flux were applied by temporary offset of the transmembrane pressure. After restoration of the transmembrane pressure, the initial flux was higher than the stable flux level, and the flux recovery depended on the standstill time. Furthermore, if a short cross flow was applied after standstill, the flux was restored to an even higher level. In all cases, the flux decreased again during operation to reach finally the same stable level as before standstill. In order to evaluate the influence of intermittent operation as practiced for water treatment on a household level, daily interruptions of flux were applied. An optimum of total daily water production rate was obtained at 21 h of operation and 3 h of standstill per day. A model was developed which can describe the impact of intermittent operation on the flux depending on the duration of the standstill and operating periods. This enables the prediction of production capacity of the system operated intermittently. The flux increase during standstill could be explained by a relaxation and expansion of the biofouling layer, while the higher flux after forward-flushing was caused by this layer being partially sloughed off. Household water treatment with the process presented here will generally be operated on a discontinuous basis. The results show that such operation schemes do not compromise the permeability of the system, but actually lead to higher fluxes after standstill.
► Discontinuous operation influences the flux in gravity-driven ultrafiltration. ► The flux recovery after standstill increases with the increase of standstill time. ► A cross-flow after standstill results in an increase in flux after standstill. ► An empirical model describes flux during intermittent operation.