Article ID Journal Published Year Pages File Type
4483398 Water Research 2011 7 Pages PDF
Abstract

The performance of microstructured hollow fiber membranes in submerged and aerated systems was investigated using colloidal silica as a model foulant. The microstructured fibers were compared to round fibers and to twisted microstructured fibers in flux-stepping experiments. The fouling resistances in the structured fibers were found to be higher than those of round fibers. This was attributed to stagnant zones in the grooves of the structured fibers. As the bubble sizes were larger than the size of the grooves of the structured fibers, it is possible that neither the bubbles nor the secondary flow caused by the bubbles can reach the bottom parts of the grooves. Twisting the structured fibers around their axes resulted in decreased fouling resistances. Large, cap-shaped bubbles and slugs were found to be the most effective in fouling removal, while small bubbles of sizes similar to the convolutions in the structured fiber did not cause an improvement in these fibers. Modules in a vertical orientation performed better than horizontal modules when coarse bubbling was used. For small bubbles, the difference between vertical and horizontal modules was not significant. When the structured and twisted fibers were compared to round fibers with respect to the permeate flowrate produced per fiber length instead of the actual flux through the convoluted membrane area, they showed lower fouling resistance than round fibers. This is because the enhancement in surface area is more than the increase in resistance caused by stagnant zones in the grooves of the structured fibers. From a practical point of view, although the microstructure does not promote further turbulence in submerged and aerated systems, it can still be possible to enhance productivity per module with the microstructured fibers due to their high surface area-to-volume ratio.

Research highlights► Structured hollow fiber membranes were studied under aerated filtration. ► Bubble size and structure size are related to efficiency. ► Twisting the fibers improved performance. ► Vertical orientation of structured fibers results in better performance compared to horizontal oriented fiber under aerated conditions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,