Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4483449 | Water Research | 2011 | 10 Pages |
The spectral responses of a leaf litter derived humic substance (LLHS) and Suwannee River fulvic acid (SRFA) upon ultraviolet (UV) A irradiation were characterized using two-dimensional correlation spectroscopy (2D-COS) based on the absorption and the synchronous fluorescence spectra at different irradiation times. A 12 day irradiation on the humic substances (HS) resulted in higher reduction of the absorbance relative to the dissolved organic carbon concentration, suggesting that aromatic chromophores were preferentially oxidized and/or non UV-absorbing compounds were generated by the photobleaching. Synchronous fluorescence spectra revealed the preferential removal of fulvic-like and humic-like fluorophores and delayed response of protein-like fluorescence upon the irradiation. The spectral features at long wavelengths (>430 nm) appear to be affected by intra-molecular interactions of the individual chromophores associated with shorter wavelengths. Absorption-based 2D-COS demonstrated that there are three types of absorption bands for the two HS, which changed sequentially in the order of 290–400 nm → 200–250 nm → 250–290 nm. In addition, two or three distinctive fluorescence bands in response to the irradiation were identified from 2D-COS. The sequential orders and the associated wavelength bands were possibly explained by the irradiation wavelengths and the differences between direct and indirect photochemical reactions. The interpretation of the 2D-COS results was very consistent with the kinetic rate constants individually calculated at several discrete wavelengths. Our study demonstrated that 2D-COS could be used as a powerful tool in identifying distinctive bands of HS that have dissimilar behavior and the associated sequential orders by visualizing the spectral changes at continuous wavelengths.
► The fist work to apply 2D-COS for investigating HS changes by photodegradation. ► 2D-COS reveals three absorption bands of HS with different reaction orders. ► Two or three distinctive fluorescence bands of HS are identified from 2D-COS. ► 2D-COS results are consistent with an interaction model and calculated kinetic rates.