Article ID Journal Published Year Pages File Type
4483825 Water Research 2010 9 Pages PDF
Abstract

The effect of reactor process configuration on anaerobic production of useful energy (hydrogen and methane) from a complex substrate was investigated for the following reactor systems: suspended growth, two-phase mixed, two-stage mixed, upflow anaerobic sludge blanket (UASB) reactor, and two-phase UASB. The mixed two-phase and two-stage configurations yielded the highest specific energy productions of 13.3 and 13.4 kJ/g COD fed, respectively. Reactor process configuration influenced microbial pathways in acidogenic reactors in that butyrate was the predominant volatile acid in phased configurations, whereas acetate was predominant in the staged configuration. The UASB reactor achieved the highest average daily energy production per reactor volume of 101 kJ/L reactor-d. All reactor configurations achieved high COD removals on the order of 99%. However, hydrogen represented only 3% of the total energy produced by the two-phase mixed and two-phase UASB configurations. Theoretical analysis revealed that the maximum specific energy production by the two-phase suspended-growth configuration is only 9% higher than that for a single-stage mixed reactor. Consequently, the production of hydrogen from complex substrates in these process configurations does not seem to be justifiable solely from an energy point of view. Instead, it is suggested that phased anaerobic systems should be considered primarily for improved process stability whereas resultant hydrogen production is of secondary benefit.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,