Article ID Journal Published Year Pages File Type
4484931 Water Research 2008 14 Pages PDF
Abstract

Two pilot-scale hybrid water treatment systems using two different poly-vinylidene fluoride (PVDF) microfiltration (MF) membranes (i.e. symmetric and composite) were operated at a constant permeate flux of 104.2 l m−2 h−1 (=2.5 md−1) with a pre-coagulation/sedimentation, sand filtration (SF), and chlorination to produce potable water from surface water. Turbidity was removed completely. And humic substances, Al, and Fe were removed very well by the pilot-scale membrane system. To control microbial growth and mitigate membrane fouling, a NaOCl solution was injected into the effluent from SF before reaching the two membranes (pre-chlorination). However, it adversly affected membrane fouling due to the oxidization and adsorption of inorganic substances such as Al, Fe, and Mn. In the next run, the NaOCl was introduced during backwash (post-chlorination). As compared with the result of pre-chlorination, this change increased the operating period of the symmetric and the composite membranes from about 10 and 50 days to about 60 and 200 days, respectively.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,