Article ID Journal Published Year Pages File Type
4485301 Water Research 2009 11 Pages PDF
Abstract

We operated 4 replicate membrane bioreactors (MBRs) in parallel to test if an acclimated seed inoculum would evolve similarly following even distribution into replicates. A cloning and sequencing library of 16S rRNA genes was obtained from the seed inoculum complemented with terminal restriction fragment length polymorphism (T-RFLP; n = 18 per reactor) analysis over the study period (n = 113 d) that targeted the 16S rRNA gene. The amoA functional gene was also monitored by T-RFLP. The T-RFLP results were analyzed by means of diversity indices, an adaptation of a moving window of similarity approach within each MBR, and non-metric multi-dimensional scaling (NMS) accompanied with multi-response permutation procedures (MRPP) to assess community interrelationships amongst MBRs. Based on the 16S rRNA microbial communities, the 4 MBRs initially diverged away from one another, followed by a convergence on Day 4. From thereon, the 16S rRNA-based communities evolved similarly throughout (average p-value = 0.49 from pair-wise MRPP). In contrast, the nitrifying communities did not undergo any discernable shift over time amongst MBRs according to T-RFLP analysis of amoA and revealed one cluster by NMS (average p-value = 0.83 from pair-wise MRPP). The study demonstrates that acclimated microbial communities evolve similarly over time in engineered systems when operational parameters are left unchanged.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,