Article ID Journal Published Year Pages File Type
4485905 Water Research 2007 10 Pages PDF
Abstract

The impacts of shock loadings of copper and zinc (up to 50 mg l−1) on the treatment efficiency of a mesoscale-fixed microbial film landfill leachate treatment system were investigated. Treatment inhibition and recovery were monitored in sequence over two 36 h experimental runs. The fate of added metals was also investigated.Copper, and to a lesser extent zinc, added to the treatment systems accumulated on the biofilm media. Increasing copper inputs (>10 mg l−1) progressively inhibited biological treatment of ammoniacal-nitrogen and carbon; this inhibition persisted into the recovery phase for nitrogen but not for carbon. Only the highest input of zinc affected media metal contents and carbon treatment rates; the latter inhibitory effect did not persist into the recovery phase. A small proportion of the metals accumulated on the biofilm media during the inhibition phase was released into the bulk leachate during the recovery experiment. These findings suggest a need to manage metal inputs into leachate treatment systems in order to ensure their continued efficacy.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,