Article ID Journal Published Year Pages File Type
4487283 Water Research 2006 10 Pages PDF
Abstract

A significant portion of the unidentified disinfection byproducts (DBPs) in chlorinated drinking water can be attributed to high molecular weight (MW)-chlorinated DBPs (above 500 Da) that may have adverse health effects. In this work, issues on the formation, adsorption and separation of high MW-chlorinated DBPs were investigated by introducing radioactive 36Cl into humic substance samples. The results show that the amount of high MW-chlorinated DBPs during chlorination decreased with the increase of contact time from 1 to 120 h, increased with the increase of pH from 5.5 to 9.5, and was less in the ultrafiltered samples from Suwannee River fulvic acid than from Suwannee River humic acid. The high MW-chlorinated DBPs were found to be effectively adsorbed by activated carbon and be possibly reduced to Cl− by activated carbon, but not to be readily desorbed from the activated carbon. Those high MW-chlorinated DBPs were demonstrated to be incapable of resolution into discrete peaks by any of the three liquid chromatography columns studied. The significant implications of these results are discussed.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,