Article ID Journal Published Year Pages File Type
4526258 Advances in Water Resources 2011 12 Pages PDF
Abstract

There is a significant spatial sampling mismatch between radar and rain gauge data. The use of rain gauge data to estimate radar-rainfall error variance requires partitioning of the variance of the radar and rain gauge difference to account for the sampling mismatch. A key assumption in the literature pertaining to the error variance separation method used to partition the variance is that the covariance between radar-rainfall error and the error of rain gauges in representing radar sampling domain is negligible. Our study presents the results of an extensive test of this assumption. The test is based on empirical data and covers temporal scales ranging from 0.25 to 24 h and spatial scales ranging from 1 to 32 km. We used a two-year data set from two high quality and high density rain gauge networks in Oklahoma and excluded the winter months. The results obtained using a resampling procedure show that covariance can be considerable at large scales due to the significant variability. As the variability of the covariance rapidly increases with larger spatial and shorter temporal scales, applications of the error variance separation method at those scales require more caution. The variability of the covariance and one of its constituting variables, the variance ratio of radar and gauge errors, shows simple scaling behavior well characterized by a power-law.

Research highlights► The zero-covariance hypothesis in the EVS method might be violated for larger spatial scale. ► The variability of the error covariance becomes larger with shorter and larger scales. ► The variability of the error covariance is characterized by power-law scaling behavior.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,