Article ID Journal Published Year Pages File Type
4526552 Advances in Water Resources 2009 14 Pages PDF
Abstract

Distributed hydrological modelling using space–time estimates of rainfall from weather radar provides a natural approach to area-wide flood forecasting and warning at any location, whether gauged or ungauged. However, radar estimates of rainfall may lack consistent, quantitative accuracy. Also, the formulation of hydrological models in distributed form may be problematic due to process complexity and scaling issues. Here, the aim is to first explore ways of improving radar rainfall accuracy through combination with raingauge network data via integrated multiquadric methods. When the resulting gridded rainfall estimates are employed as input to hydrological models, the simulated river flows show marked improvements when compared to using radar data alone. Secondly, simple forms of physical–conceptual distributed hydrological model are considered, capable of exploiting spatial datasets on topography and, where necessary, land-cover, soil and geology properties. The simplest Grid-to-Grid model uses only digital terrain data to delineate flow pathways and to control runoff production, the latter by invoking a probability-distributed relation linking terrain slope to soil absorption capacity. Model performance is assessed over nested river basins in northwest England, employing a lumped model as a reference. When the distributed model is used with the gridded radar-based rainfall estimators, it shows particular benefits for forecasting at ungauged locations.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,