Article ID Journal Published Year Pages File Type
4526558 Advances in Water Resources 2008 13 Pages PDF
Abstract

A finite volume MUSCL scheme for the numerical integration of 2D shallow water equations is presented. In the framework of the SLIC scheme, the proposed weighted surface-depth gradient method (WSDGM) computes intercell water depths through a weighted average of DGM and SGM reconstructions, in which the weight function depends on the local Froude number. This combination makes the scheme capable of performing a robust tracking of wet/dry fronts and, together with an unsplit centered discretization of the bed slope source term, of maintaining the static condition on non-flat topographies (C-property). A correction of the numerical fluxes in the computational cells with water depth smaller than a fixed tolerance enables a drastic reduction of the mass error in the presence of wetting and drying fronts. The effectiveness and robustness of the proposed scheme are assessed by comparing numerical results with analytical and reference solutions of a set of test cases. Moreover, to show the capability of the numerical model on field-scale applications, the results of a dam-break scenario are presented.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,