Article ID Journal Published Year Pages File Type
4526780 Advances in Water Resources 2007 12 Pages PDF
Abstract

In this work the numerical integration of 1D shallow water equations (SWE) over movable bed is performed using a well-balanced central weighted essentially non-oscillatory (CWENO) scheme, fourth-order accurate in space and in time. Time accuracy is obtained following a Runge–Kutta (RK) procedure, coupled with its natural continuous extension (NCE). Spatial accuracy is obtained using WENO reconstructions of conservative variables and of flux and bed derivatives. An original treatment for bed slope source term, which maintains the established order of accuracy and satisfies the property of exactly preserving the quiescent flow (C-property), is introduced in the scheme. This treatment consists of two procedures. The former involves the evaluation of the point-values of the flux derivative, considered as a whole with the bed slope source term. The latter involves the spatial integration of the source term, analytically manipulated to take advantage from the expected regularity of the free surface elevation. The high accuracy of the scheme allows to obtain good results using coarse grids, with consequent gain in terms of computational effort. The well-balancing of the scheme allows to reproduce small perturbations of the free surface and of the bottom otherwise of the same order of magnitude of the numerical errors induced by the non-balancing. The accuracy, the well-balancing and the good resolution of the model in reproducing free surface flow over movable bed are tested over analytical solutions and over numerical results available in literature.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,