Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4526853 | Advances in Water Resources | 2007 | 21 Pages |
Abstract
We consider the numerical approximation to Richards' equation because of its hydrological significance and intrinsic merit as a nonlinear parabolic model that admits sharp fronts in space and time that pose a special challenge to conventional numerical methods. We combine a robust and established variable order, variable step-size backward difference method for time integration with an evolving spatial discretization approach based upon the local discontinuous Galerkin (LDG) method. We formulate the approximation using a method of lines approach to uncouple the time integration from the spatial discretization. The spatial discretization is formulated as a set of four differential algebraic equations, which includes a mass conservation constraint. We demonstrate how this system of equations can be reduced to the solution of a single coupled unknown in space and time and a series of local constraint equations. We examine a variety of approximations at discontinuous element boundaries, permeability approximations, and numerical quadrature schemes. We demonstrate an optimal rate of convergence for smooth problems, and compare accuracy and efficiency for a wide variety of approaches applied to a set of common test problems. We obtain robust and efficient results that improve upon existing methods, and we recommend a future path that should yield significant additional improvements.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth-Surface Processes
Authors
H. Li, M.W. Farthing, C.N. Dawson, C.T. Miller,