Article ID Journal Published Year Pages File Type
4526983 Advances in Water Resources 2006 13 Pages PDF
Abstract

The two-dimensional implementation of the analytic element method (AEM) is commonly used to simulate steady-state saturated groundwater flow phenomena at regional and local scales. However, unlike alternative groundwater flow simulation methods, AEM results are not ordinarily used as the basis for simulation of reactive solute transport. The use of AEM-simulated flow fields is impeded by the discrepancy between a continuous representation of flow and a typically discrete representation of transport, and requires translation of the flow solution to a discrete analog. This paper presents a variety of methods for analytically calculating conservative discrete water fluxes and integrated components of the dispersion tensor across cell interfaces. An Eulerian finite difference method based on these AEM-derived parameters is implemented for use in simulation of 2D (vertically averaged) solute transport. This implementation is first benchmarked against existing methods that use standard finite difference flow solutions, then used to investigate the effects of an inaccurate discrete water balance. It is shown that improper translation of AEM fluxes leads to significant water balance errors and inaccurate simulation of contaminant transport.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,