Article ID Journal Published Year Pages File Type
4532023 Continental Shelf Research 2013 16 Pages PDF
Abstract

•Comprehensive measurements of elevation, vegetation and hydrodynamics in mangroves.•Tidal flow routing in mangroves compared for three distinct biogeophysical settings.•Higher elevated mangroves are incised by creeks and flow routing is creek-dominated.•Mangroves significantly affect within-forest flow velocities and directions.•Combination of elevation, vegetation and exposure determines local flow routing.

Flow routing in mangrove forests has great implications for the transport and distribution of sediments and nutrients and hence for mangroves' development and persistence. Whereas previous studies were limited to the creeks, supposedly feeding the surrounding mangroves, this study demonstrates the contribution of biogeophysical impacts on flow routing through estuarine mangroves. We present the results of a field campaign covering three pristine mangrove sites in two estuaries in Trang province, Thailand. The sites range from a mangrove forest elevated above mean sea level with steep cliffs and incised by tidal creeks, to smoothly inclining mangroves fronted by extensive mudflats and showing a clear vegetation zonation starting below mean sea level. It is shown how flow routing through estuarine mangroves is impacted by biogeophysical factors; elevation, exposure and vegetation. Within the higher elevated mangroves, creek flow prevails when water levels remain below a dense vegetation layer at the mangrove fringe bordering the estuary. Sheet flow prevails when this threshold is exceeded and direct water exchange takes place. The low-lying sites do not feature creeks and tidal flows are typically sheet flows, being susceptible to forcing by river discharges. With decreasing water depths and/or increasing vegetation densities, the effects of this forcing are reduced and flow velocities follow the vegetation induced cross-shore water level gradients. Flow velocities within the creeks are up to an order of magnitude greater than those within the vegetation, where velocities decrease progressively with increasing vegetation densities. Particular vegetation and elevation characteristics cause irregular velocity variations along the vertical, within the vegetation as well as in the creeks. Tentative tidal flux calculations demonstrate the significant contribution of creek flow to the total tidal prism in higher elevated mangroves. By explicitly quantifying and mapping flow routing through mangrove forests, this study provides observational evidence for flow routing phenomena that have been postulated in previous studies.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , ,