Article ID Journal Published Year Pages File Type
4532573 Continental Shelf Research 2011 12 Pages PDF
Abstract

Linear sandbanks appear in the lee of coastal headlands where the hydrodynamics are dominated by strong tidal currents and the seabed is characterized by an abundance of sands. They may develop as symmetrical sandbanks on either sides of the headland or as an unique banner bank. The present study numerically investigates the combined effects of waves and tide on the initial development of headland-associated sandbanks. A morphological model based on the coupling of the wave propagation module SWAN (Simulating WAves Nearshore) with the three-dimensional circulation module COHERENS (COupled Hydrodynamical-Ecological model for REgioNal and Shelf seas) is applied to an idealized Gaussian shaped headland for waves conditions varying in heights and directions at the offshore boundary. The coupling considers the effects of the interactions between the wave and current bottom boundary layers, namely the enhanced levels of turbulence near the bottom and the increase of the total bottom shear stress. Waves substantially modify the initial development of sandbanks formed by suspension narrowing their width and reorienting them along the side of the headland. They weakly impact the morphogenesis of sandbanks by bedload favoring on a short-time scale the growth of symmetric circular-shaped features and a central depositional spit prolonging the headland tip. Waves of transverse directions toward the tip of the headland contribute to the initiation by suspension of a well-developed feature in the headland side of low energy limiting the seabed evolution in the exposed area.

► We model the effects of the waves on the initiation of headland-associated sandbanks. ► Mappings of the depth-averaged currents and the bottom shear stresses in combined waves and tidal current are produced. ► Oblique waves impact the asymmetrical development of the sandbanks on a short-time scale.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,