Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4532878 | Continental Shelf Research | 2010 | 10 Pages |
Flocculation has an important impact on particle trapping in estuarine turbidity maximum (ETM) through associated increases in particle settling velocity. To quantify the importance of the flocculation processes, a size-resolved flocculation model is implemented into an ocean circulation model to simulate fine-grained particle trapping in an ETM. The model resolves the particle size from robust small flocs, about 30 μm, to very large flocs, over 1000 μm. An idealized two-dimensional model study is performed to simulate along-channel variations of suspended sediment concentrations driven by gravitational circulation and tidal currents. The results indicate that the flocculation processes play a key role in generating strong tidal asymmetrical variations in suspended sediment concentration and particle trapping. Comparison with observations suggests that the flocculation model produces realistic characteristics of an ETM.