Article ID Journal Published Year Pages File Type
4535025 Deep Sea Research Part I: Oceanographic Research Papers 2009 16 Pages PDF
Abstract

Hydrothermal vent environments are characterized by large gradients of toxic chemicals and high temperatures, which play a significant role in defining species’ distributions. We used high-resolution imagery and spatially explicit in-situ physico-chemical measurements analyzed within a Geographic Information System (GIS) in order to characterize the spatial relations among different groups of megafauna, temperature, and chemistry within two discrete vent communities (40 and 50 m2) on the Eastern Lau Spreading Center (ELSC). Chemical (sulfide and O2 concentrations) and temperature data were obtained from approximately 75 different locations within each community using in-situ instruments. All data were integrated into a GIS, which served as a visualization tool and enabled the data to be analyzed in a spatial context. Our results confirm the importance of abiotic variables in defining the distributions of some fauna and elucidate several biological associations that are consistent between the two communities. The provannid snail, Alviniconcha spp., appears to actively avoid temperatures above 32–46 °C and/or sulfide concentrations exceeding approximately 260 μM. Slightly higher average sulfide concentrations and temperatures were measured among aggregations of Ifremeria nautilei compared to aggregations of the mussel Bathymodiolus brevior; however, the presence of mixed aggregations of the two species indicates an overlap in requirements. The brachyuran crab, Austinograea spp., was consistently observed directly on symbiont-containing species, particularly Alviniconcha spp. The solitary snail, Eosipho desbruyeresi, was rarely observed on biological substrata, but was often (60% of its population at the most active site) within 5 cm of symbiont-containing fauna, indicating a tolerance and preference for proximity to areas of high productivity. Densities and coverage of species differed substantially between the two communities despite high species overlap. Symbiont-containing species covered much larger areas at the more hydrothermally active site, ABE1, while shrimp and anemones occurred in relatively higher densities within the less-active site, TM1. This is the first study to thoroughly characterize realized distributions of megafauna at vent sites along the ELSC.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , ,