Article ID Journal Published Year Pages File Type
4536974 Deep Sea Research Part II: Topical Studies in Oceanography 2011 9 Pages PDF
Abstract

Heterotrophic bacteria, cyanobacteria, and picoeukaryotic algae dominate the plankton community of high nutrient-low chlorophyll (HNLC) areas of the eastern equatorial Pacific (EEP). While grazing on these picoplankton is often attributed to aplastidic zooflagellates, mixotrophic nanoflagellates (phagotrophic phototrophs) may also exert a large grazing pressure. We assessed the relative contributions of mixotrophic nanoplankton and obligate heterotrophs to picoplankton phagotrophy in mixed-layer water of the EEP using 0.8-μm Fluorescently-Labeled Bacteria (FLB). Obligate heterotrophs and phototrophs were distinguished from their ratios of microscopically measured red (chlorophyll a) to green (proflavin-stained protein) fluorescence. Sampling sites were located along a nutrient gradient formed by a tropical instability wave at 0.5°N between 123.5°W and 128°W and at 1.75°N, 125°W. The majority of ingested particles were found within 3-5 μm flagellates, with 54% of the demonstrated phagotrophs belonging to the high-pigment putatively phototrophic population and obligate heterotrophs responsible for 51% of the demonstrated phagotrophy due to their greater propensity to ingest multiple prey. The importance of mixotrophy as a means of alleviating nutrient stress is indicated by a strong inverse relationship between the proportion of community FLB uptake by mixotrophs and ambient nutrient concentration. Low ambient Fe concentration and a demonstrated community response to Fe-addition in shipboard grow-out experiments suggest that mixotrophs were primarily engaging in phagotrophy to offset Fe-deficiencies.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , ,