Article ID Journal Published Year Pages File Type
4537307 Deep Sea Research Part II: Topical Studies in Oceanography 2009 12 Pages PDF
Abstract

Protobranch bivalve species of the family Nuculidae pass through either a planktonic lecithotrophic larval stage or a direct non-planktonic development. Oogenesis of the three sublittoral species examined is synchronous. Deposition of egg masses by Nucula delphinodonta and spawning by Nucula annulata and Nucula proxima occur only during summer months. Among the four bathyal and abyssal species, Ennucula similis, Ennucula granulosa, Deminucula atacellana, and Brevinucula verrilli, oogenesis is asynchronous and there is no discernable pattern of periodicity of spawning. Absence of periodicity in reproduction in these deep-sea species is confirmed by examination of individuals from dredge samples taken at different times of the year. The median apparent fecundity among both sublittoral and deep-sea species is directly related to size (i.e. shell length) and age. Among the Nuculidae the median apparent fecundity is greater among sublittoral than bathyal and abyssal species. The geographic distribution of a species depends on its capacity to disperse. The dispersal of the planktonic lecithotrophic larvae of the sublittoral species N. annulata and N. proxima is limited to the continental shelf of the northwestern Atlantic by inshore bottom circulation and because these very small planktonic larvae (<2.5 mm) lack the capacity to move vertically upward through the water column into the offshore currents. On the other hand, the bathyal and abyssal species having lecithotrophic larvae have a very wide amphi-Atlantic distribution extending from 60°N to 40°S latitude along the North and South American coasts and from 55°N to ca. 19°S from off Europe southwards to the coast of West Africa as a consequence of dispersal by planktonic lecithotrophic larvae along the seafloor. The amphi-Atlantic dispersal must occur stepwise between deep-sea populations (e.g., off Greenland). Such a geographic distribution indicates a widespread dispersal and is supported by the genetic similarity that has been described between North American and western European populations of D. atacellana.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,