Article ID Journal Published Year Pages File Type
4537539 Deep Sea Research Part II: Topical Studies in Oceanography 2009 15 Pages PDF
Abstract

The response of Arctic microbial communities to a variety of natural organic matter substrates, including peat, ice algae and ice-rafted debris was examined using bacterial regrowth experiments and compared to unamended controls. Bacterial growth and production were followed together with the phylogenetic composition using length-heterogeneity polymerase chain reaction (LH-PCR), and 16S rRNA gene cloning and sequencing. Intact phospholipids (IPLs) and fatty acids evaluated the relationship between lipids and bacterial community structure and the impact of varied organic substrates on microbial lipid synthesis. Differential responses to organic matter sources were observed, with ice algae supporting both higher bacterial growth and production than terrestrial-derived peat. In spite of disparate growth kinetics, the community composition remained similar in all amended incubations as was confirmed by automated ribosomal intergenic spacer analysis (ARISA). Gammaproteobacteria dominated the initial incubations, whereas in extended incubations with terrestrial peat Alphaproteobacteria dominated; in particular Sulfitobacter phylotypes closely related (>99%) to an Arctic sea-ice-associated member of the Roseobacter clade (ARK10278). Arctic bacterioplankton preferentially synthesized two phospholipids, phosphatidylethanolamine (PE) and phosphatidylglygerol (PG), with 18:0n, 18:1Δ11, 16:0n and 16:1Δ9 as the primary fatty acids. Overall, results show that organic matter source plays an important role in structuring bacterioplankton community composition, with similar IPL and fatty acid lipid distributions observed among phylogenetically distinct bacteria.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , ,