Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4540511 | Estuarine, Coastal and Shelf Science | 2011 | 11 Pages |
Habitat variability is one of the factors influencing species richness within estuarine systems, and a loss of habitat can result in a restructuring of the estuarine ichthyofaunal assemblage, particularly if these conditions persist over long time periods. The potential effects of the loss of extensive submerged macrophyte beds (Ruppia cirrhosa and Potamogeton pectinatus) on an estuarine fish assemblage were investigated through an analysis of a long-term seine net catch dataset from the temporarily open/closed East Kleinemonde Estuary, South Africa. Catch data for a 12-year period, encompassing six years of macrophyte presence and six years of macrophyte senescence, indicated that the loss of this habitat did not influence species richness but changes in the relative abundance of certain species were evident. A shift in dominance from vegetation-associated species to those associated with sandy environments (e.g. members of the family Mugilidae) was observed. However, species wholly dependent on macrophytes such as the critically endangered estuarine pipefish Syngnathus watermeyeri were only recorded during years when macrophyte beds were present, while vegetation-associated species such as the sparid Rhabdosargus holubi persisted at lower levels of relative abundance. The reduced abundance of all vegetation-associated fish species during years of macrophyte senescence was probably reflective of declining food resources resulting from the loss of macrophyte beds and/or increased vulnerability to predation. Submerged beds of aquatic plants are therefore important habitats within temporarily open/closed estuaries, South Africa’s dominant estuary type.
► Loss of submerged macrophyte beds did not influence fish species richness. ► Changes in the relative abundance of certain fish species were evident. ► Dominance shifted from vegetation-associated species to sand-associated species. ► How dependent fish species are on macrophytes affects their resilience to habitat loss. ► Mouth state more strongly affects fish assemblage structure within TOCEs.