Article ID Journal Published Year Pages File Type
4540589 Estuarine, Coastal and Shelf Science 2011 13 Pages PDF
Abstract

This is the first record of live (stained) deep-sea benthic foraminifera in the 850 m deep silled Hardangerfjord, the second deepest fjord in Western Norway. Estimates of organic carbon flux (∼2.5 g Cm−2 y−1) show that the fjord-values are comparable to similar depths on the continental slope. Accordingly, although these first samples only provide relative abundance data, the low proportion of live to dead individuals in the top cm of the sediment suggests a low foraminifera biomass. Another similarity with the deep sea is that the abiotic environment of the deep basins is stable even though the deepest basins are isolated from the open deep sea by the continental shelf and sills in the outer parts of the fjord suggesting that the deep-sea species are introduced as propagules during deep-water renewals. There is evidence of an increase in dissolution of fragile calcareous tests (e.g., Nonionella iridea) especially in the innermost part of Hardangerfjord since the 1960s and this has led to a relative increase in dead agglutinated assemblages. The presence of larger forms with tests >1 mm provides substrata for the attachment of smaller forms and therefore an increase in species diversity. Indeed, the diversity is comparable both to that of the open deep sea and that of reported macrofauna from the same sites, reflecting similar ecological status. Holtedahl (1965) suggested that there may be some down-slope transport of sediment into the deep basins with the deposition of turbidites. Despite some evidence of transport, no major recent disturbance due to turbidite deposition seems to have occurred and hence Hardangerfjord presents a unique environment with elements of deep-sea faunas in a land-locked setting.

Research highlights► First record of live deep-sea foraminifera in the 850 m deep silled Hardangerfjord. ► Deep-sea species probably introduced as propagules across the shallow sills. ► Evidence of increased dissolution of calcareous tests in inner parts since 1960s. ► Species diversity comparable with open deep sea and with macrofauna from same sites.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , ,