Article ID Journal Published Year Pages File Type
4540751 Estuarine, Coastal and Shelf Science 2010 9 Pages PDF
Abstract

Land use/cover and mangrove spatial changes were assessed for ten sites and their sub-catchments in Southeast Queensland, Australia. Two time periods were involved: 1972–1990, a period of relatively high rainfall, and 1990–2004, which was significantly drier. Aerial photographs and Landsat satellite imagery were used to map the inter-tidal wetlands and classify the land use/cover in the sub-catchments. A Maximum Likelihood Classification was used to map three types of land cover: agriculture, built-up and plantation forest. Mangroves (mainly Avicennia marina) were the focus as they have been recorded over recent decades encroaching into salt marsh. The Mangrove-Salt marsh Interface (MSI) Index was developed to quantify the relative opportunity for mangroves to expand into salt marshes, based on the shared boundary between them. The index showed a consistent relationship with mangrove expansion and change. To address problems of high dimensionality and multi-collinearity of predictor variables, a Partial Least Squares Regression (PLSR) model was used. A key finding of this research was that the contribution of environmental variables to spatial changes in the mangroves was altered following a reduction in rainfall. For example, agriculture had more influence on mangrove expansion and change during the wet period than during the dry period.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , ,