Article ID Journal Published Year Pages File Type
4541868 Estuarine, Coastal and Shelf Science 2008 14 Pages PDF
Abstract

Tidal flooding and surface drainage patterns have often been used to describe mangrove species zonation. However, in mangrove forests exhibiting little topography, ambiguous species distributions and/or few species, such approaches are ineffective. We identified four physiognomic mangrove forest types (Riverine, Fringing, Overwash and Basin) at Coombabah Lake, a tidal lake in southeast Queensland, Australia and investigated tidal flooding patterns using synoptic surveys of tidal observations at the local Standard Port combined with local water depth observation. Subsequently three sub-types of the basin forest type were identified: (1) Deep Basin Forest with mature trees, ∼50 cm standing water and ∼3 tides per year; (2) Medium Depth Basin Forest with intermediate tree development, ∼15–30 cm standing water and 20–40 tides per year; and (3) Shallow Basin Forest with relatively recent mangrove establishment, 5–15 cm standing water and ∼80 tides per year. These three basin sub-types were found to flood at different tide heights with the Shallow Basin flooding for tides above mean high water springs and the Deep Basin flooding only for tide heights approaching the highest astronomical tide. We propose that these basin types represent a succession in mangrove forest development that corresponds with increasing water depth and tree maturation over time. The succession not only represents increasing age but also change in basin substrate composition. This is manifest as increasing pneumatophore density and an increasing area of basin surface occupied by contiguous pneumatophore cover. As a result, it seems that mangrove development is able to modify tidal flooding into the basin by increasingly impeding water movement.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , ,