Article ID Journal Published Year Pages File Type
4542518 Estuarine, Coastal and Shelf Science 2006 11 Pages PDF
Abstract

Essential nutrients for seagrass growth may be derived from benthic decomposition of organic matter. To test this idea, cores of Halophila ovalis (seagrass-vegetated) and unvegetated sediment (control) were amended with either particulate organic matter (POM) or dissolved organic matter (DOM) to test whether a positive feed-back loop exists, where increased organic matter results in increased seagrass nutrients. POM was added in the form of seagrass wrack (0, 1, 5, 12 g core−1) and DOM was added with sucrose diffusion tubes at the root zone (0, 0.8, 2.4, 5.2 g core−1). Cores were incubated under saturating light conditions (12 h light/12 h dark) at 18 °C, for 4 weeks. Results suggest a complex balance between positive and negative effects of organic matter enrichment. Whilst leaf molar concentrations of N and P of H. ovalis increased (by 15 and 30% respectively), plant growth declined (up to 50% relative to control) for both DOM and POM enrichments. Phosphate was removed from sediment porewater following POM addition and most likely translocated to the leaves. Stressors other than nutrient limitation (e.g. biogeochemical constraints) reduce growth and affect the nutrient dynamics of the seagrass and should be the focus of future work.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , ,