Article ID Journal Published Year Pages File Type
4549018 Journal of Marine Systems 2008 17 Pages PDF
Abstract

Process-oriented studies with the unstructured-grid, three-dimensional Finite-Volume Coastal Ocean Model (FVCOM) of Georges Bank were used to examine the importance of physical processes on the cross-isobath transport of nutrients onto the Bank. Starting from idealized vertical profiles of NO3 constructed from summertime climatologic fields, the nutrient field was integrated in time using a conservative tracer equation with both homogenous and stratified initial hydrography and both tide and wind forcing. The model results reveal that: a) nutrient fluxes are spatially inhomogeneous, with the greatest nutrient flux generated by tidal pumping into surface waters along the edge of the Bank's northern flank; b) a surface nutrient maximum occurs on the northeast flank as a result of advection along the northern edge and bifurcation of the flow as waters circulate clockwise and spread laterally around the eastern portion of the Bank; c) advection enriches nutrient concentrations downstream and around the Bank, generating a donut-shaped pattern of elevated nutrients; and d) waters on the top of the Bank, especially in the southwest portions, experience the lowest nutrient flux rates. The length of time required to reach a quasi-equilibrium state of nutrient distribution over the Bank is controlled primarily by tidal advection, with cross-frontal fluxes modulated by stratification, surface wind stress, and the initial nutrient concentration in the Gulf of Maine source waters.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Oceanography
Authors
, , , , , , ,