Article ID Journal Published Year Pages File Type
4552620 Ocean Modelling 2009 13 Pages PDF
Abstract

Morphodynamic modeling systems are being subjected to a growing development over the last decade and increasingly appear as valuable tools for understanding and predicting coastal dynamics and morphological changes. The recent improvements of a 2DH unstructured grid morphodynamic modeling system are presented in this paper and include the implementation of an adaptive morphodynamic time step, the integration and full coupling of a wave model and the forcing by large scale wave and tide models. This modeling system was first applied to a dissipative wave-dominated beach located on the French coast, where the availability of field data allowed for a fine calibration and validation of wave-induced flows and longshore transport, and an assessment of the various sediment transport formulae. The modeling system was then applied to a very dynamic Portuguese tidal inlet where numerical tests show the computational efficiency of using an adaptive time step. Morphodynamic simulations of this inlet with real wave and tidal forcings resulted in realistic morphological predictions. The two applications show that the improved modeling system is able to predict hydrodynamics, transport and morphological evolutions in complex coastal environments.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,