Article ID Journal Published Year Pages File Type
4572394 CATENA 2008 11 Pages PDF
Abstract

Though knowledge about the distribution and properties of soils is a key issue to support sustainable land management, existing knowledge of the soils in Tigray (Northern Ethiopian Highlands) is limited to either maps with a small scale or with a small scope. The goal of this study is to establish a model that explains the spatial soil variability found in the May-Leiba catchment, and to open the scope for extrapolating this information to the surrounding basalt-dominated uplands. A semi-detailed (scale: 1/40 000) soil survey was conducted in the catchment. Profile pits were described and subjected to physico-chemical analysis, and augerings were conducted. This information was combined with information from aerial photographs and geological and geomorphologic observations. The main driving factors that define the variability in soil types found were: 1) geology, through soil parent material and the occurrence of harder layers, often acting as aquitards or aquicludes; 2) different types of mass movements that occupy large areas of the catchment; and 3) severe human-induced soil erosion and deposition. These factors lead to “red-black” Skeletic Cambisol–Pellic Vertisol catenas on basalt and Calcaric Regosol–Colluvic Calcaric Cambisols–Calcaric Vertisol catenas on limestone. The driving factors can be derived from aerial photographs. This creates the possibility to extrapolate information and predict the soil distribution in nearby regions with a comparable geology. A model was elaborated, which enables the user to predict soil types, using topography, geomorphology, geology and soil colours, all of which can be derived from aerial photographs. This derived model was later applied to other catchments and validated in the field.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , , , , , ,