Article ID Journal Published Year Pages File Type
4572569 CATENA 2008 12 Pages PDF
Abstract

Dendrogeomorphological analyses of trees affected by debris flows have regularly been used to date past events. However, this method has always been limited to forested cones where trees registered the impact of previous events. The minimum age dating of trees growing in the debris deposits can, in contrast, provide information on the latest possible moment of past activity. In this paper, we report on results obtained from a combination of these two approaches on a forested cone in the Valais Alps (Switzerland). A detailed geomorphic map in a scale of 1:1000 served as a basis for the sampling strategy. Disturbed Larix decidua Mill. and Picea abies (L.) Karst. trees growing in the deposits allowed reconstruction of 49 events between AD 1782 and 2005 as well as the determination of the spatial extent of events. In the debris-flow channels where survivor trees are missing, we selected the oldest post-event trees and assessed their age by counting their growth rings. Missing rings due to lack of center as well as to sampling height were added so as to determine real tree age. The combination of the dendrogeomorphological event reconstruction with the assessment of germination dates of successor trees allowed realistic approximation of the minimum time elapsed since the last debris-flow activity in 23 of the 29 channels present on the current-day cone surface. In general, channels in the northern part of the cone and those close to the currently active channel generally show signs of (sub-) recent activity with one last overbank sedimentation event in the 1980s, whereas signs of debris-flow activity are absent from the channels in the outermost part since the late 19th century. As a consequence of the deeply incised channel and the stabilization measures undertaken along the banks, signs of debris flows are missing in the tree-ring record for the past two decades.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,