Article ID Journal Published Year Pages File Type
4575437 Geoderma 2007 11 Pages PDF
Abstract

Phosphorus (P) binding to minerals and ion exchange capacity in different clay fractions were examined for a non-calcareous soil in southwest Sweden. The soil had received pig slurry during three decades, 2 kg lower than the recent maximum load of 22 kg P ha− 1 year− 1 as regulated by livestock density legislation. The topsoil was found to contain 33% clay by weight. Illite was the predominant clay mineral and constituted 13% of total soil. Vermiculite (10%), K-feldspar (14%) and plagioclase (21%) also constituted significant proportions of the mineralogical matrix. Within the most fine-grained clay fraction, 50% of which was less than 0.1 μm in particle size, illite and vermiculite dominated totally, 50 and 23% respectively. In fine-grained (FG), most fine-grained (MFG) and colloidal fractions, there were strong relationships (Pearson correlation coefficient 0.98–1.00) between calcium (Ca) and P. There was a low molar ratio Ca:P in added manure and the presence of Ca–P complexes in the fine soil fractions was indicated. In contrast, in the coarse soil fraction (> 2 μm), there was a clear relationship (Pearson coefficient 0.97) between P and iron oxide (Fe2O3) and between P and aluminium oxide (Al2O3) throughout the soil profile. Thus even for non-calcareous soils, formation of Ca–P complexes should be taken into account with regards to losses of colloidal P to drainage water.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,