Article ID Journal Published Year Pages File Type
4576709 Journal of Hydrology 2012 14 Pages PDF
Abstract

SummaryWe describe a method for estimating the daily, spatially distributed recharge of aquifers in mountainous karst terrains using a water balance. Water recharge into an aquifer is a highly variable process over both time and space. Many methods have been developed to assess aquifer recharge although most have been applied to detrital aquifers. Many karst aquifers, especially in Mediterranean areas, occur in mountainous environments where rainfall and evapotranspiration can vary considerably over space and time and where there are usually few rainfall and temperature monitoring stations. We have used an advanced geostatistical method to estimate daily rainfall and temperature. The method involves kriging with an external drift using a climatological semi-variogram model inferred by modified maximum-likelihood. The depth of the soil–epikarst layer is estimated from remote sensing and terrain analysis data together with field observations and electrical resistivity tomography. Because of the karst nature of the mountainous terrain, concentrated infiltration is allowed for in some places. The parameters are calibrated against the cumulative discharge of various springs. The method is illustrated by a case study of the Sierra de las Nieves aquifer in the mountainous karst region of southern Spain.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , , ,