Article ID Journal Published Year Pages File Type
4578891 Journal of Hydrology 2009 8 Pages PDF
Abstract

SummaryVegetation processes are seldom considered in lumped conceptual rainfall–runoff (RR) models although they have significant impacts on runoff via the control of evapotranspiration. This paper incorporates the remotely-sensed the moderate resolution imaging spectrometer mounted on the polar-orbiting terra satellite-leaf area index (MODIS-LAI) data into Xinanjiang rainfall–runoff model and assesses the model performance on 210 catchments in south-east Australia. The results show that the inclusion of LAI data improves both the model calibration results as well as the daily runoff prediction in ungauged catchments. It is likely that more significant improvements to the model structure to integrate the remotely-sensed vegetation and other data can further reduce the uncertainty in runoff prediction in ungauged catchments.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,