Article ID Journal Published Year Pages File Type
4579077 Journal of Hydrology 2009 10 Pages PDF
Abstract

SummaryCorrect estimation of sediment volume carried by a river is very important for many water resources projects. Conventional sediment rating curves, however, are not able to provide sufficiently accurate results. In this paper, an adaptive neuro-fuzzy approach is proposed to estimate suspended sediment concentration on rivers. The daily rainfall, streamflow and suspended sediment concentration data from Mad River Catchment near Arcata, USA are used as a case study. In the first part of the study, various combinations of current daily rainfall, streamflow and past daily streamflow, suspended sediment data are used as inputs to the neuro-fuzzy computing technique so as to estimate current suspended sediment. In the second part of the study, the potential of neuro-fuzzy technique is compared with those of the three different artificial neural networks (ANN) techniques, namely, the generalized regression neural networks (GRNN), radial basis neural networks (RBNN) and multi-layer perceptron (MLP) and two different sediment rating curves (SRC). The comparison results reveal that the neuro-fuzzy models perform better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,