Article ID Journal Published Year Pages File Type
4580755 Journal of Hydrology 2006 21 Pages PDF
Abstract

Estimation of recharge in a variety of climatic conditions is possible using a daily soil moisture balance based on a single soil store. Both transpiration from crops and evaporation from bare soil are included in the conceptual and computational models. The actual evapotranspiration is less than the potential value when the soil is under stress; the stress factor is estimated in terms of the readily and total available water, parameters which depend on soil properties and the effective depth of the roots. Runoff is estimated as a function of the daily rainfall intensity and the current soil moisture deficit. A new concept, near surface soil storage, is introduced to account for continuing evapotranspiration on days following heavy rainfall even though a large soil moisture deficit exists. Algorithms for the computational model are provided. The data required for the soil moisture balance calculations are widely available or they can be deduced from published data. This methodology for recharge estimation using a soil moisture balance is applied to two contrasting case studies. The first case study refers to a rainfed crop in semi-arid northeast Nigeria; recharge occurs during the period of main crop growth. For the second case study in England, a location is selected where the long-term average rainfall and potential evapotranspiration are of similar magnitudes. For each case study, detailed information is presented about the selection of soil, crop and other parameters. The plausibility of the model outputs is examined using a variety of independent information and data. Uncertainties and variations in parameter values are explored using sensitivity analyses. These two case studies indicate that the improved single-store soil moisture balance model is a reliable approach for potential recharge estimation in a wide variety of situations.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,