Article ID Journal Published Year Pages File Type
4582534 Expositiones Mathematicae 2009 9 Pages PDF
Abstract

We prove that weakly compact operators on a non-reflexive normed space cannot be bijective. We also show that, in the above result, bijectivity cannot be relaxed to surjectivity. Finally, we study the behaviour of surjective weakly compact operators on a non-reflexive normed space, when they are perturbed by small scalar multiples of the identity, and derive from this study the recent result of Spurný [A note on compact operators on normed linear spaces, Expo. Math. 25 (2007) 261–263] that compact operators on an infinite-dimensional normed space cannot be surjective.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,