Article ID Journal Published Year Pages File Type
4583705 Journal of Algebra 2016 24 Pages PDF
Abstract

The fundamental theorem of cancellation AMT [4] and [11], which is the algebraic generalization of discrete Morse theory [2] for simplicial complexes and smooth Morse theory [10] for differentiable manifolds, is discussed in the context of general chain complexes of free modules.The Chevalley (co)homology table of a Lie algebra is often a tremendous beast. Using AMT, we compute the homology of the Lie algebra of all triangular matrices solnsoln over QQ or ZpZp for large enough primes p  . We determine the column and row in the table of Hk(soln;Z)Hk(soln;Z) where the p  -torsion first appears. Module Hk(soln;Zp)Hk(soln;Zp) is expressed by the homology of a chain subcomplex for the Lie algebra of all strictly triangular matrices nilnniln, using the Künneth formula. All conclusions are accompanied by computer experiments.Then we generalize some results to Lie algebras of (strictly) triangular matrices gln≺ and gln⪯ with respect to any partial ordering ⪯ on [n][n]. We determine the multiplicative structure of H⁎(gln⪯) w.r.t. the cup product over fields of zero or sufficiently large characteristic, the result being the exterior algebra.Matchings used here can be analogously defined for other Lie algebra families and in other (co)homology theories; we collectively call them normalization matchings. They are useful for theoretical as well as computational purposes.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,