Article ID Journal Published Year Pages File Type
4583748 Journal of Algebra 2016 24 Pages PDF
Abstract

A conjecture of Dehornoy claims that, given a presentation of an Artin–Tits group, every word that represents the identity can be transformed into the trivial word using the braid relations, together with certain rules (between pairs of words that are not both positive) that can be derived directly from the braid relations, as well as free reduction, but without introducing trivial factors ss−1ss−1 or s−1ss−1s. This conjecture is known to be true for Artin–Tits groups of spherical type or of FC type. We prove the conjecture for Artin–Tits groups of sufficiently large type.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,