| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 4584440 | Journal of Algebra | 2015 | 15 Pages | 
Abstract
												The present paper shows that if q∈Pq∈P or q=0q=0, where PP is the set of prime numbers, then there exist characteristic q fields Eq,k:k∈NEq,k:k∈N, of Brauer dimension Brd(Eq,k)=kBrd(Eq,k)=k and infinite absolute Brauer p -dimensions abrdp(Eq,k)abrdp(Eq,k), for all p∈Pp∈P not dividing q2−qq2−q. This ensures that Brdp(Fq,k)=∞Brdp(Fq,k)=∞, p†q2−qp†q2−q, for every finitely-generated transcendental extension Fq,k/Eq,kFq,k/Eq,k. We also prove that each sequence ap,bpap,bp, p∈Pp∈P, satisfying the conditions a2=b2a2=b2 and 0≤bp≤ap≤∞0≤bp≤ap≤∞, equals the sequence abrdp(E),Brdp(E)abrdp(E),Brdp(E), p∈Pp∈P, for a field E of characteristic zero.
Keywords
												
											Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Algebra and Number Theory
												
											Authors
												I.D. Chipchakov, 
											