Article ID Journal Published Year Pages File Type
4585663 Journal of Algebra 2012 14 Pages PDF
Abstract

The question of which quadratic forms become isotropic when extended to the function field of a given form is studied. A formula for the minimum dimension of the minimal isotropic forms associated to such extensions is given, and some consequences thereof are outlined. Especial attention is devoted to function fields of Pfister forms. Here, the relationship between excellence concepts and the isotropy question is explored. Moreover, in the case where the ground field is formally real and has finite Hasse number, the isotropy question is answered for forms of sufficiently large dimension.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory