Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4585689 | Journal of Algebra | 2012 | 21 Pages |
We continue the program started in Manon (2010) [M1] to understand the combinatorial commutative algebra of the projective coordinate rings of the moduli stack of quasi-parabolic SL2(C) principal bundles on a generic marked projective curve. We find general bounds on the degrees of polynomials needed to present these algebras by studying their toric degenerations. In particular, we show that the square of any effective line bundle on this moduli stack yields a Koszul projective coordinate ring. This leads us to formalize the properties of the polytopes used in proving our results by constructing a category of polytopes with term orders. We show that many of results on the projective coordinate rings of follow from closure properties of this category with respect to fiber products.