Article ID Journal Published Year Pages File Type
4585733 Journal of Algebra 2012 43 Pages PDF
Abstract

We give a new construction of a Hopf algebra defined first by Reading (2005) [Rea05] whose bases are indexed by objects belonging to the Baxter combinatorial family (i.e., Baxter permutations, pairs of twin binary trees, etc.). Our construction relies on the definition of the Baxter monoid, analog of the plactic monoid and the sylvester monoid, and on a Robinson–Schensted-like correspondence and insertion algorithm. Indeed, the Baxter monoid leads to the definition of a lattice structure over pairs of twin binary trees and the definition of a Hopf algebra. The algebraic properties of this Hopf algebra are studied and among other, multiplicative bases are provided, and freeness and self-duality proved.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory