Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4585862 | Journal of Algebra | 2012 | 11 Pages |
Abstract
We show that if G is a finite group then no chain of modular elements in its subgroup lattice L(G) is longer than a chief series. Also, we show that if G is a nonsolvable finite group then every maximal chain in L(G) has length at least two more than the chief length of G, thereby providing a converse of a result of J. Kohler. Our results enable us to give a new characterization of finite solvable groups involving only the combinatorics of subgroup lattices. Namely, a finite group G is solvable if and only if L(G) contains a maximal chain X and a chain M consisting entirely of modular elements, such that X and M have the same length.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory