Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4585864 | Journal of Algebra | 2012 | 23 Pages |
Abstract
An association scheme is called quasi-thin if each of its basic relations has valency 1 or 2. A quasi-thin scheme is called Kleinian if its thin residue is the Klein four-group with respect to relational multiplication. It is proved that any Kleinian quasi-thin scheme arises from a near-pencil on 3 points, from an affine plane of order 2, or from a projective plane of order 2. The main result in this paper is that any non-Kleinian quasi-thin scheme is schurian and separable. We also construct an infinite family of Kleinian quasi-thin schemes which is neither schurian nor separable.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory