Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4586079 | Journal of Algebra | 2011 | 5 Pages |
Abstract
Let D be a valued division algebra, finite-dimensional over its center F. Assume D has an unramified splitting field. The paper shows that if D contains a maximal subfield which is Galois over F (i.e. D is a crossed product) then the residue division algebra contains a maximal subfield which is Galois over the residue field . This theorem captures an essential argument of previously known noncrossed product proofs in the more general language of noncommutative valuations. The result is particularly useful in connection with explicit constructions.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory