Article ID Journal Published Year Pages File Type
4586209 Journal of Algebra 2011 21 Pages PDF
Abstract

Additive deformations of bialgebras in the sense of Wirth are deformations of the multiplication map of the bialgebra fulfilling a compatibility condition with the coalgebra structure and a continuity condition. Two problems concerning additive deformations are considered.With a deformation theory a cohomology theory should be developed. Here a variant of the Hochschild cohomology is used. The main result in the first part of this paper is the characterization of the trivial deformations, i.e. deformations generated by a coboundary.Starting with a Hopf algebra, one would expect the deformed multiplications to have some analogue of the antipode, which we call deformed antipodes. We prove, that deformed antipodes always exist, explore their properties, give a formula to calculate them given the deformation and the antipode of the original Hopf algebra and show in the cocommutative case, that each deformation splits into a trivial part and into a part with constant antipodes.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory