Article ID Journal Published Year Pages File Type
4586464 Journal of Algebra 2011 38 Pages PDF
Abstract

We generalize the constructions of Eisenbud, Fløystad, and Weyman for equivariant minimal free resolutions over the general linear group, and we construct equivariant resolutions over the orthogonal and symplectic groups. We also conjecture and provide some partial results for the existence of an equivariant analogue of Boij–Söderberg decompositions for Betti tables, which were proven to exist in the non-equivariant setting by Eisenbud and Schreyer. Many examples are given.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory