Article ID Journal Published Year Pages File Type
4586503 Journal of Algebra 2011 18 Pages PDF
Abstract

In this paper we continue the study of the relationship between degeneracy and decomposability in abelian crossed products (K. McKinnie (2008) [McK08], ). In particular we construct an indecomposable abelian crossed product division algebra of exponent p and index p2 for p an odd prime. The algebra we construct is generic in the sense of S.A. Amitsur and D. Saltman (1978) [AS78], and has the property that its underlying abelian crossed product is a decomposable division algebra defined by a non-degenerate matrix. This algebra gives an example of an indecomposable generic abelian crossed product which is shown to be indecomposable without using torsion in the Chow group of the corresponding Severi–Brauer variety as was needed in N.A. Karpenko (1998) [Kar98], and K. McKinnie (2008) [McK08]. It also gives an example of a Brauer class which is in Tignol's Dec group with respect to one abelian maximal subfield, but not in the Dec group with respect to another.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory